Extracting Steady State Components from Synchrophasor Data Using Kalman Filters

نویسندگان

  • Farhan Mahmood
  • Hossein Hooshyar
  • Luigi Vanfretti
  • Rodolfo Araneo
چکیده

Abstract: Data from phasor measurement units (PMUs) may be exploited to provide steady state information to the applications which require it. As PMU measurements may contain errors and missing data, the paper presents the application of a Kalman Filter technique for real-time data processing. PMU data captures the power system’s response at different time-scales, which are generated by different types of power system events; the presented Kalman Filter methods have been applied to extract the steady state components of PMU measurements that can be fed to steady state applications. Two KF-based methods have been proposed, i.e., a windowing-based KF method and “the modified KF”. Both methods are capable of reducing noise, compensating for missing data and filtering outliers from input PMU signals. A comparison of proposed methods has been carried out using the PMU data generated from a hardware-in-the-loop (HIL) experimental setup. In addition, a performance analysis of the proposed methods is performed using an evaluation metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter

In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...

متن کامل

Comparing Kalman Filters and Observers for Dynamic State Estimation with Model Uncertainty and Malicious Cyber Attacks

Kalman filters and observers are two main classes of dynamic state estimation (DSE) routines. Power system DSE has been implemented by various Kalman filters, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In this paper, we discuss two challenges for an effective power system DSE: (a) model uncertainty and (b) potential cyber attacks. To address this, the cubatu...

متن کامل

Global Systems for Mobile Position Tracking Using Kalman and Lainiotis Filters

We present two time invariant models for Global Systems for Mobile (GSM) position tracking, which describe the movement in x-axis and y-axis simultaneously or separately. We present the time invariant filters as well as the steady state filters: the classical Kalman filter and Lainiotis Filter and the Join Kalman Lainiotis Filter, which consists of the parallel usage of the two classical filter...

متن کامل

Mobile Position Tracking in Three Dimensions using Kalman and Lainiotis Filters

In this paper we present two time invariant models mobile position tracking in three dimensions, which describe the movement in x-axis, y-axis and z-axis simultaneously or separately, provided that there exist measurements for the three axes. We present the time invariant filters as well as the steady state filters: the classical Kalman Filter and Lainiotis Filter and the Join Kalman Lainiotis ...

متن کامل

Covariance Analysis of a vector tracking GPS receiver based on MMSE multiuser Detection

In high dynamic conditions, using vector tracking loops instead of scalar tracking loops in GPS receivers is proved as an efficient method to compensate the performance. The Minimum Mean Squared Error detector as a multiuser detector is applied in the vector tracking loop for more reliability and efficiency. The Kalman filter does the two tasks of tracking and extracting the navigation data aft...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016